Inelastic Dark Matter in Supersymmetric Inverse Seesaw

Bhupal Dev

Maryland Center for Fundamental Physics, University of Maryland

in collaboration with Haipeng An, Yi Cai and R. N. Mohapatra [arXiv:1110.1366 [hep-ph]]

Brookhaven Forum 2011 Brookhaven National Laboratory Upton, NY

Outline

- Introduction
- Inverse Seesaw
- Sneutrino DM
- Relic Abundance
- Direct Detection
- Collider Signatures
- Conclusion

Dark Matter: Evidence for New Physics beyond SM

- A major evidence for beyond SM physics.
- Dedicated experimental searches to determine the mass and interaction properties of DM.
- Supplement the new physics search at LHC.

Why beyond MSSM?

- Neutral LSP is a natural DM candidate in SUSY models with R-parity.
- Two CDM candidates in MSSM:
 - Lightest Neutralino $\widetilde{\chi}_1^0$ (\widetilde{B}^0 , \widetilde{W}_{3L}^0 , \widetilde{h}_u^0 , \widetilde{h}_d^0): Good DM candidate for $m_{\widetilde{\chi}_1^0} > 18$ GeV (LEP2 + relic density constraints) [Hooper, Plehn '02]
 - Left Sneutrino $\widetilde{\nu}_L$: Ruled out (invisible Z-width + relic density + direct detection constraints). [Falk, Olive, Srednicki '94; Hebbeker '99]
- For very light DM (≤ 20 GeV), need to go beyond MSSM.
- Another reason for extensions of MSSM: neutrino mass.
- Can the same extensions of MSSM have a very light DM and observed neutrino parameters?

Seesaw Mechanism and Sneutrino DM

- Add one or more SM singlet heavy neutrino.
- Superpartner of the singlet neutrino(s) with a small admixture of left sneutrino can be the DM.
- Type-I seesaw: Majorana RH neutrino (N). [Minkowski '77; Yanagida '79; Glashow '79; Gell-Mann, Ramond, Slansky '80; Mohapatra, Senjanović '80]

$$\begin{split} \mathcal{L}_{\text{mass}} &= \left(\overline{L} M_D N + \text{h.c.}\right) + N M_R N \\ \mathcal{M}_{\nu} &= \left(\begin{array}{cc} 0 & M_D \\ M_D^T & M_R \end{array} \right), \quad \textit{m}_{\nu}^{\text{light}} = -M_D M_R^{-1} M_D^T \end{split}$$

Seesaw Mechanism and Sneutrino DM

- Add one or more SM singlet heavy neutrino.
- Superpartner of the singlet neutrino(s) with a small admixture of left sneutrino can be the DM.
- Type-I seesaw: Majorana RH neutrino (N). [Minkowski '77; Yanagida '79; Glashow '79; Gell-Mann, Ramond, Slansky '80; Mohapatra, Senjanović '80]

$$\begin{split} \mathcal{L}_{\text{mass}} &= (\overline{L} M_D N + \text{h.c.}) + N M_R N \\ \mathcal{M}_{\nu} &= \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix}, \quad m_{\nu}^{\text{light}} &= -M_D M_R^{-1} M_D^T \end{split}$$

- Several models constructed for sneutrino DM with type-I seesaw. [Lee, Matchev, Nasri '07; Allahverdi, Dutta, Mazumdar '07; Arina, Fornengo '07; Thomas, Tucker-Smith, Weiner '08; Deppisch, Pilaftsis '08; Cerdeno, Munoz, Seto '09;...]
- Also non-thermal RH sneutrino DM (either by small Yukawa or low reheating temperature). [Arkani-Hamed, Hall, Murayama, Smith, Weiner '00; Asaka, Ishiwata, Moroi '06; Gopalakrishna, de Gouvea, Porod '06]

Inverse Seesaw

 Add two SM singlet fermions: mostly Dirac N and Majorana S. [Mohapatra '86; Mohapatra, Valle '86]

$$\begin{split} \mathcal{L}_{\text{mass}} &= & (\overline{L} M_D N + \overline{N} M_R S + \text{h.c.}) + S \mu_S S \\ \mathcal{M}_{\nu} &= & \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M_R \\ 0 & M_R^T & \mu_S / 2 \end{pmatrix}; \\ m_{\nu}^{\text{light}} &\simeq & \left(M_D M_R^{-1} \right) \mu \left(M_D M_R^{-1} \right)^T & \text{for } \mu \ll M_R \end{split}$$

- TeV scale M_R even with large $M_D \sim m_t$ for $\mu \sim \text{keV}$.
- In contrast with type-I where $M_D \lesssim m_e$ for TeV M_R .
- Smallness of μ is *natural* in 't Hooft sense.

Sneutrino DM in Inverse Seesaw

Neglecting the \(\mu\) effect, the complex scalar eigenstate for sneutrino LSP:

$$\widetilde{\chi}_1 = \sum_{i=1}^3 \left[(U^{\dagger})_{1
u_i} \widetilde{
u}_i + (U^{\dagger})_{1N_i} \widetilde{N}_i^{\dagger} + (U^{\dagger})_{1S_i} \widetilde{S}_i \right]$$

 $c_{(0,1,2)} \equiv \sum_{i=1}^{3} |U_{1(\nu_i,N_i,S_i)}|^2$ determines the fraction of each component.

- The $\not\!\!L$ effect induces the splitting terms $\sum_{m.n=1}^{9} A_{mn} \widetilde{\chi}_m \widetilde{\chi}_n$.
- Leads to two real scalar fields $(\chi_{1,2})$ for the LSP with mass splitting

$$\delta M_{\chi} = \frac{4|A_{11}|}{M_{\chi}} \quad (|A_{11}| \sim \mu_{S} M_{SUSY})$$

Sneutrino DM in Inverse Seesaw

$$\widetilde{\chi}_1 = \sum_{i=1}^3 \left[(U^{\dagger})_{1
u_i} \widetilde{
u}_i + (U^{\dagger})_{1N_i} \widetilde{N}_i^{\dagger} + (U^{\dagger})_{1S_i} \widetilde{S}_i \right]$$

 $c_{(0,1,2)} \equiv \sum_{i=1}^{3} |U_{1(\nu_i,N_i,S_i)}|^2$ determines the fraction of each component.

- The $\not\!\!L$ effect induces the splitting terms $\sum_{m,n=1}^{9} A_{mn} \widetilde{\chi}_{m} \widetilde{\chi}_{n}$.
- Leads to two real scalar fields $(\chi_{1,2})$ for the LSP with mass splitting

$$\delta M_{\chi} = \frac{4|A_{11}|}{M_{\chi}} \quad (|A_{11}| \sim \mu_{\mathcal{S}} M_{\text{SUSY}})$$

 Naturally leads to inelastic DM for direct detection since the gauge boson mediator necessarily connects χ₁ to χ₂ through the gauge Noether current

$$iZ^{\mu}(\chi_1\partial_{\mu}\chi_2-\chi_2\partial_{\mu}\chi_1)$$

- For $M_{\rm SUSY} \sim$ TeV, typical splitting \sim a few keV (observable range for direct detection).
- Inelasticity of the DM intimately linked to the small Majorana mass of the neutrino.

Inverse Seesaw in Models beyond MSSM

Inverse seesaw within MSSM gauge group SU(2)_L × U(1)_Y:

$$W_1 = W_{MSSM} + Y_{\nu}LH_uN + M_RNS + \frac{1}{2}S\mu_SS$$

[Arina, Bazzocchi, Fornengo, Romao, Valle '08]

- Needs to omit terms like LH_uS and NN allowed by the symmetry.
- Could extend the gauge symmetry to $SU(2)_L \times U(1)_Y \times U(1)_{B-L}$ [Khalil, Okada, Toma '11] or global B-L [Josse-Michaux, Molinaro '11].

Inverse Seesaw in Models beyond MSSM

Inverse seesaw within MSSM gauge group SU(2)_L × U(1)_Y:

$$\mathcal{W}_1 = \mathcal{W}_{\text{MSSM}} + Y_{\nu} L H_u N + M_R N S + \frac{1}{2} S \mu_S S$$

[Arina, Bazzocchi, Fornengo, Romao, Valle '08]

- Needs to omit terms like LH_uS and NN allowed by the symmetry.
- Could extend the gauge symmetry to $SU(2)_L \times U(1)_Y \times U(1)_{B-L}$ [Khalil, Okada, Toma '11] or global B-L [Josse-Michaux, Molinaro '11].
- However, these scenarios do not arise from GUT.
- To realize inverse seesaw at TeV scale within a GUT framework, we use the SUSYLR gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$. [BD, Mohapatra '09]
- Minimal inverse seesaw structure arises *naturally* as the $SU(2)_R$ gauge symmetry forbids other terms in the superpotential:

$$W_2 = W_{\text{MSSM}} + Y_{\nu} L \Phi L^c + M_R S \phi_R L^c + \frac{1}{2} S \mu_S S$$

Relic Abundance of Sneutrino DM in SUSYLR

Relic Abundance of Sneutrino DM in SUSYLR

- Relic density and invisible *Z*-decay width constraint restricts $c_0 < 0.16$.
- Experimental lower bound on Z'-mass restricts $c_1 < 0.5$.
- The annihilation cross section for Z'-channel suppressed compared to Z-channel by factor $(c_1/c_0)^2 (M_Z/M_{Z'})^4$.
- Z'-channel important only when c₀ is very small.

Direct Detection

Elastic channel due to interaction with light Higgs:

$$\lambda h_0 \widetilde{\chi}_1^\dagger \widetilde{\chi}_1 = \frac{1}{2} \lambda h_0 (\chi_1^2 + \chi_2^2)$$

Elastic scattering cross section

$$\sigma_N^{\rm el} = \frac{\lambda^2 M_N^4 (\sum_q \langle N | m_q \bar{q} q | N \rangle)^2}{4\pi v_{\rm wk}^2 M_h^4 (M_N + M_\chi)^2}$$

with
$$\lambda = (g_{2L}^2 c_0 + g_{2R}^2 c_1) v_{wk}/4$$
.

 Suppressed by mass of the light quark (mostly strange).

Direct Detection

Elastic channel due to interaction with light Higgs:

$$\lambda h_0 \widetilde{\chi}_1^{\dagger} \widetilde{\chi}_1 = \frac{1}{2} \lambda h_0 (\chi_1^2 + \chi_2^2)$$

Elastic scattering cross section

$$\sigma_N^{\rm el} = \frac{\lambda^2 M_N^4 (\sum_q \langle N | m_q \bar{q} q | N \rangle)^2}{4\pi v_{\rm wk}^2 M_h^4 (M_N + M_\chi)^2}$$

with
$$\lambda = (g_{2l}^2 c_0 + g_{2R}^2 c_1) v_{wk}/4$$
.

 Suppressed by mass of the light quark (mostly strange).

Inelastic channel due to interaction with gauge bosons:

$$i(a_1Z^{\mu} + a_2Z'^{\mu})(\widetilde{\chi}_1\partial_{\mu}\widetilde{\chi}_1^{\dagger} - \widetilde{\chi}_1^{\dagger}\partial_{\mu}\widetilde{\chi}_1)$$

= $i(a_1Z^{\mu} + a_2Z'^{\mu})(\chi_1\partial_{\mu}\chi_2 - \chi_2\partial_{\mu}\chi_1)$

Inelastic scattering cross section

$$\sigma_{\rho,n}^{\text{iel}} = \frac{g_{2L}^4 \kappa_{\rho,n}}{4\pi \cos^4 \theta_W M_Z^4} \frac{M_{\rho,n}^2 M_\chi^2}{(M_{\rho,n} + M_\chi)^2} \times \left[c_0^2 + c_1^2 \left(\frac{g_{2R}}{g_{2L}} \right)^4 \left(\frac{M_Z}{M_{Z'}} \right)^4 \frac{\cos^{12} \theta_W}{\cos^2 2\theta_W} \right]$$
with $\kappa_{\rho,n} = \left(\frac{3}{4} - q_{\rho,n} \sin^2 \theta_W \right)^2$

Direct Detection Cross Section

iDM Scattering Rate

$$\begin{array}{lcl} \frac{dR}{dE_r} & = & \frac{\rho_{\chi_1}}{M_\chi} \int_{|\mathbf{v}| > v_{\rm min}} d^3\mathbf{v} \frac{f(\mathbf{v})}{|\mathbf{v}|} \frac{A_{\rm eff}^2 \bar{\sigma}_N}{2\mu_{\chi N}} F^2(|\mathbf{q}|) \\ v_{\rm min} & = & \frac{1}{\sqrt{2M_A E_r}} \left(\frac{M_A E_r}{\mu_{\chi A}} + \delta\right) \end{array}$$

- Sampling only high-velocity tail of Maxwellian velocity distribution.
- Enhanced annual modulation.
- Threshold velocity for iDM scattering to occur: $v_{\text{threshold}} = \sqrt{2\delta/\mu_{YA}}$.
- No events at low recoil energies.
- A peak in the scattering rate.
- Favors target nuclei with heavier mass.

Scattering Rate and Annual Modulation

Collider Signatures

- Characteristic LHC signal depending on the sparticle spectrum. [Belanger, Kraml, Lessa '11].
 - For m_ḡ < m_{q̄}, dominant signal is charged di-lepton + four jets + missing E_T.
 - For $m_{\widetilde{a}} \simeq m_{\widetilde{a}}$, two or three leptons + two jets + missing E_T .
 - For $m_{\tilde{q}} > m_{\tilde{q}}$, one or two leptons + two hard jets + missing E_T .
- In SUSY inverse seesaw, for most of the parameter space, gluino is heavier than the lightest squark (usually stop); might be easier to identify the signal. [An, BD, Cai, Mohapatra (work in progress)]
- ullet Also possible to identify sneutrino LSP from dilepton resonance (true for generic models with B-L). [Lee, Li '11]

Conclusion

- SUSY inverse seesaw naturally leads to iDM.
- Light dark matter is favored by the model.
- Could be constrained to be very light (below 20 GeV) by the current and future direct detection bounds.
- Large differential scattering rate and annual modulation predictions can be tested in future direct detection experiments.
- The collider signature is dijet plus same sign charged di lepton with missing E_T.
- May be able to indentify SUSY inverse seesaw by combining collider and direct detection searches.

Backup Slide 1: Fitting CRESST-II

